据美国《沃顿知识在线》刊文,在近日硅谷举办的人工智能前沿大会(AI Frontiers conference)上,AI领域与自动驾驶汽车团队的资深人士分享了有关AI时代下自动驾驶的最新研究成果和认知。
全文如下:
每当人们想起自驾车,通常出现在脑海里的画面是一辆无人操控的完全自动驾驶车。然而现实情况比这要复杂得多:不仅仅在于汽车自动化存在不同的等级——比如初期的巡航控制系统——AI也在车辆系统发挥作用,对于驾驶员和乘客来说,旅途也变得更为安全。在嘈杂的环境下,AI技术甚至能够通过读取唇语使车辆判断驾驶员的意图。
自动驾驶的加速竞赛
从全球来看,美国和中国在自动驾驶汽车领域处于领先。尽管德国和日本以汽车制造出名,但在自动驾驶领域稍显落后。“关键的区别在于AI。”来自中国的无人车创业公司景驰科技(JingChi. ai)的联合创始人韩旭说道。“中国和美国是AI技术的领头羊。”在自动驾驶规定条例上,中美也处在前沿。驱动这一领域的有三大趋势:电动车辆的愈发普及、以Uber和Lyft等拼车服务公司为代表的共享经济的出现,以及AI技术的提升。他认为自动驾驶其实就是将机器人驾驶员与电动汽车结合起来。
大多数自动驾驶汽车公司正研发适用于Level4的技术。自动驾驶车辆存在五个级别。Level1是最低级,典型特征是应用多年的巡航控制系统。Level5是最高级,此阶段车辆可实现完全自动化。Level4是稍低级别——在该高度自动化级别下,车辆无需驾驶员干预或保持注意力,但只在专门封闭区域或交通环境等特定场景行驶。
应用于自动驾驶的AI
英伟达自动驾驶高级总监Danny Shapiro表示,因自动驾驶风险很高,技术公司对自动驾驶汽车技术的研发非常谨慎。“这不同于网飞公司(Netflix)的个性化推荐引擎,AI技术必须做到准确无误。”他在大会上说道。这意味着AI需要极大的计算力和一系列代码。自动驾驶车辆的后备箱置有强大的计算设备和图像处理装置,它们可进行深度学习并解析所有收集的数据——以此判断前方对象是人、车还是消防栓等等。
即便完全自动驾驶汽车进入市场仍需时日,AI已经在革新车内装置。前置摄像头可以识别乘坐人员并追踪驾驶员的眼球位置,以判断其是否打盹或分心——甚至可以读取驾驶员唇语。而车外传感器和摄像头与车内技术配置一同提升驾驶安全性。比如,当交叉路口出现危险状况,另一辆车要闯红灯时,车辆会发出能被听到的提醒。当驾驶员想要变换车道时,车辆也会发出“当心!一辆摩托车正靠近中间车道!”的警告。“即使我们半自动驾驶,也会有多种堪称‘守护神’的装置。”Shapiro说道。
更为安全的自动驾驶
自动驾驶汽车公司的主要目标就是让行驶更为安全。Uber的高科技研发中心工程主任、卡内基梅隆大学研究教授Jeff Schneider表示,94%的交通事故由人为失误造成。这其中一半的问题都出在感知上——驾驶员未集中注意力或是没有看见对面的目标物。而另一半是决策失误导致的——驾驶员行驶过快或是错误判断场景。
Schneider称,自动驾驶车辆可以解决这两大问题。驾驶员感知将由传感器、雷达、摄像头、激光雷达(一种遥感系统)以及其他工具辅助。而车辆可以对目标和周围其他物体进行3D定位,实现360度全方位和高分辨率的摄像视图,并获取目标运动速度等其他相关数据。同时,复杂的计算系统能够对地形加以分析,以便做出正确的驾驶决策。
提高驾驶准确性的一种方法是合并系统内的冗余数据。比如,如果一个路标含糊不清,就有必要采取恰当措施以确保自动驾驶车辆不受干扰。Schneider称车辆配置地图会告知该位置的路标。而且,这些车辆经过庞大数量的数据训练,在雨雪和洪涝等不同条件下都经过测试。自动驾驶汽车公司甚至利用计算机生成的路况条件对车辆进行训练,比如在光线刺眼的日落下行驶。“通过几台服务器,我们在短短五小时就能产生超过30万的驾驶里程,并在两天之内对美国境内每一条铺面道路进行算法测试。”英伟达自动驾驶高级总监Shapiro表示。
无疑,这个任务对车辆来说非常艰巨。Schneider说道,“假设你是写代码的人,你绝对会崩溃的。”因为他们要考虑过街的人群、路上的其他车辆、广告牌、前方的交通标志、车道、自行车、行人等等。
自动驾驶的前世今生
对于那些对完全自动驾驶车辆持怀疑态度的人来说,不妨回首下自动驾驶汽车的进程,Schneider说道。早在20世纪80年代,卡内基梅隆大学的自动驾驶汽车项目NavLab就已经覆盖了货车车型,车身配备计算设备和传感器,用以自动和辅助驾驶。他说,“那是机器人的时代,我们只能用影像记录,等待惊喜出现。”1995年,NavLab第五代自动驾驶汽车实现从匹兹堡到加州南部的“无手动横穿美国”之旅,其中98%的里程是自主驾驶,包括一个长为70英里的路段不受人类干预。
2000年,NavLab项目覆盖越野车。车身加装GPS设备和雷达装置,更易精确识别物体且避免撞击。2007年,美国国防高级研究计划局(DAPAR)举行了一场名为Grand Challenge的自动驾驶汽车挑战赛,这其中自动驾驶技术的一大发展是地图的应用,提供了一个完全重建的道路环境。“AI前进了一步。”Schneider说道。卡内基梅隆大学在比赛中获胜。也就是从这时开始,谷歌意识到自动驾驶汽车的潜力并启动了自动驾驶汽车项目。自此之后,AI、机器学习和深度学习呈壮大之势。
不过,乘客在乘坐自动驾驶车辆时会觉得舒适吗?根据Uber在匹兹堡和菲尼克斯进行的自动驾驶车辆体验测试,公众似乎很乐意接受。Schneider称,尽管在刚开始他们担忧人们对这些车持有恐惧心理,但结果恰恰相反。比如,一些驾驶员不能选择自动驾驶的Uber,但一些乘客会追在这些车后面,希望能够搭乘车辆。